A Modelling Approach to Assess Regional Economic Impacts of Transport Infrastructure Projects and Transport Initiatives at European Scale

Carsten Schürmann

Colloque scientifique sur les observatoires autoroutiers et d'Infrastructures linéaires: incidences environmentales et socioéconomiques, à partir du cas d'A39 Paris, 17 et 18 mars 2005

Presentation

Background and Theory

- Model Description
- Simulation Results: Accessibility, GDP, Cohesion
- Conclusions

Complex Relationship

- Many of the most economically successful regions are located in the European core.
- But there are also centrally located regions suffering from economic decline.
- As expected, many of the *poorest regions* are located in the *European periphery*.
- But also many *peripheral regions* belong to the most *economically prosperous ones*.
- Moreover, some of the *fastest growing regions* in Europe are located in the *European periphery*.

The *Trans-European Transport Networks (TEN-T)* are one of the *most ambitious initiatives* of the EU since its foundation.

The *masterplans* for rail, roads, waterways, ports and airports require public and private investment of *400-500 billion* € until the year 2016.

The EU hopes that the TEN-T will contribute to *reducing* the *disparities* between regions and *strengthening the competitiveness* of European regions.

The important role of transport infrastructure for regional development is one of the fundamental principles of regional economics.

Hypothesis:

Regions with better access to input materials and markets will be more productive, competitive and hence more successful than remote regions.

But:

TEN-T = Cohesion?

Presentation

Background and Theory

Model Description

Simulation Results: Accessibility, GDP, Cohesion
Conclusions

Approach: Regional Production Function

In an extension of the theoretical approach of the production function, an additional production factor *accessibility* is incorporated into the production function:

Accessibility indicators measure the *location* of a region with respect to *other regions* and the *transport connections* to reach them.

There are *many different ways* to calculate accessibility indicators. The most frequently used is the *potential accessibility*:

Model Structure

Scenarios Simulated to date

Туре	Code	Scenarios
Base	000	Reference scenario
Network	A1	TEN Priority Projects (Essen list)
scenarios	A21	High-speed rail priority projects
	A22	Conventional rail projects
	A23	All road priority projects
	A24	All rail priority projects
	A3	All TEN/TINA projects
	A4	All TEN projects
	A51	New list of priority projects
	A52	New list of rail priority projects
	A53	New list of road priority projects
	A61	A3 + additional projects in CC12
	A62	A3 + extended number of projects in CC12
Pricing	B1	SMC pricing of road freight
scenarios	B2	SMC pricing of all modes travel/freight
	C1	A1 + B2

Presentation

- Background and Theory
- Model Description

Simulation Results: Accessibility, GDP, Cohesion

Conclusions

Accessibility Reference Scenario 2020

Changes in Accessibility: A1, A3, B1, B2

Accessibility: Development over Time

Accessibility rail/road (travel, million) in EU15

Changes GDP/capita: A1, A3, B1, B2

GDP/capita: Development over Time

Cohesion Indicators: Accessibility, GDP/capita

Scenario	Accessibility cohesion effects (+/-)					GDP cohesion effects (+/-)				
	CoV	Gini	G/A	RC	AC	CoV	Gini	G/A	RC	AC
A1	+	+	++	+	-	+	+	•	-	—
A21	+	+	+	+	-	+	+		-	—
A22	+	+	+	+	+	+	+		-	-
A23	+	+	+	+	+	-	-		-	-
A24	+	+	+	+	-	+	+		-	-
A3	++					+				
A4	+	+	++	++	-	+	+	-	-	—
A51	+	+	++	++	-	+	+		_	
A52	+	+	++	+	-	+	+		-	-
A53	+	+	+	+	+	-	-		+	-
A61	++	++	++	++		+	+	+	+	
A62	++	++	++	++	-	+	+	+	+	-
B1	-	-	_	—	++	-	_		—	++
B2	-				++	+	+	+	++	++
C1	+	+	+	+	++	+	+	+	+	++

Presentation

- Background and Theory
- Model Description
- Simulation Results: Accessibility, GDP, Cohesion
- Conclusions

Conclusions (I): Summary of Findings

		Network scenarios	Pricing scenarios	Combination scenarios
	Accessibility	All regions improve acc.	All regions become less accessible	Some regions improve acc., other become less accessible
21	Accessibility disparities	Reduction in relative terms but increase in absolute terms (except: conventional road and rail projects)	Increase in relative terms but decrease in absolute terms	The pro-cohesion effects of network scenarios are stronger than anti- cohesion effects of pricing

Conclusions (II): Accessibility and GDP

- Large changes in accessibility lead to only small changes in GDP per capita.
- Convergence (divergence) in *accessibility* does *not* always lead also to convergence (divergence) in *GDP per capita*.
- The direction and size of cohesion effects strongly depend on the cohesion indicator used.
- Socio-economic macro trends have much stronger impacts on regional development than transport policies.

Summary: Main Model Characteristics

- 20 years backcasting, 20 years forecasting on a year-by-year basis at NUTS-3 level
- **6 economic sectors** considered
- Forecasting *distributive effects* (not generative)
- Incl. *all relevant modes* (road, rail, air, seaways)
- Modelling both economy and demography
- Suitable to simulate *both infrastructure and pricing* scenarios, and both overall *programmes* or individual *projects*
- Wide range of output variables available, presented in different formats (maps, 3D, difference plots, charts, tables)

Further Information

IASON Homepage: http://www.inro.tno.nl/iason/

SASI Homepage:

http://irpud.raumplanung.uni-dortmund.de/irpud/ pro/sasi/sasi.htm

Carsten Schürmann RRG Spatial Planning and Geoinformation cs@brrg.de, Fon 04361 / 508 777 Webpage: www.brrg.de

Klaus Spiekermann, Michael Wegener S&W Urban and Regional Research ks@spiekermann-wegener.de, Fon 0231 / 1899 439 mw@spiekermann-wegener.de, Fon 0231 / 1899 441

